

Product Specifications

产品承认书

客 户	Customer:	
部品编号	Part Number:	A2542
产品名称	Description:	2510
客户料号	Code NO:	

样品提供(SAMPLE PROVIDE)		
工程 Engineering 业务 Sales 核准 Approval		
张 名	潘云丹	张 名

客户承认(CUSTOMER APPROVAL)		
工程 Engineering	品管 Q.C	核准 Approval

产品承认书目录

- 2、目录-----2-2
- 3、技术规范-----3-9
- 4、产品图纸------10

1, SCOPE

适用范围

The contents of specifications for 2510 series connector strip, including product performance, test methods and inspection requirements

本规格书内容适用于 2510 系列条形连接器,包含了产品的性能、试验方法和检验要求

2 APPLICABLE STANDARDS

适用的标准

2.1	GB/T2421	Testing method for Environmental of Electrical Connectors Class 1 :
		General Principles
	GB/T2421	电工电子产品环境试验 第一部分 总则
2.2	GB/T2423	Testing method for Environmental of Electrical Connectors
	GB/T2423	电工电子产品环境试验方法
2.3	GB/T2424	Testing method for Environmental of Electrical Connectors
	GB/T2424	电工电子产品环境试验导则
2.4	GB/T5095	Testing Procedure/method for components of electric equipment
		电子设备用机电元件基本试验规程及测量方法

3、 USE CONDITION

使用条件

Ambient temperature Range:-25℃~+85℃
 环境温度: -25℃~+85℃

3.2 Applicable Wire Sizes:AWG#24~#30

适用线规: AWG#24~#30

3.3 Applicable PC board thickness:1.6mm

适用 PC 板厚度: 1.6mm

4、 Appearance and Dimension

外观及尺寸

4.1 Appearance:Product surface without defect, dirt, crack, and mechanical damang, Contact without rust, plating not oxided and not peeled.

产品表面不应有对制品有害的缺陷、污垢、裂痕及机械损伤;接触件无锈蚀、镀层 氧化、脱落等现象.

- **4.2 Dimension:According to drawings** 外形尺寸:依照附图
- 4.3 Exchangable:Exchangable with same specification products.

互换性:相同规格应能互换

Kinghelm[®]

5、Material

材 料

材料				
P/N	Туре	Material	Finish	Expiain
零件名称	类 型	材 料	表面处理	说 明
Terminal	Contact	Phosphor bronze	Tin Plating:3~5 µ m	
端 子	插 簧	锡青磷铜 厚 0.20mm	镀锡: 3~5µm	
Housing	Plastic		Color: White	
孔 座	塑 壳	Nylon66 UL94V-0	颜色: 白色	RoHS
	Plastic		Color: Beige	
Wafer	塑 壳	Nylon66 UL94V-0	颜色:米色	
针 座	Contact	Brass	Tin Plating:2.5~5 µ m	
	插 针	黄铜 厚□0.64mm	镀锡: 2.5~5µm	

6、Electrical Performance 电气性能

N0. 序号	Ltem 项 目	Test mode 试验方法	Requirement 技术要求
6.1	Current Rated 额定电流		4A AC DC
6.2	Voltage Rated 额定电压		250V AC DC
6.3	ContactResistance 接触电阻	A maximum voltage of 20mV and a maximum current of 100mA are applied to the Mate connector 组合状态下的连接器,两端施以最大测试电压 20 mV 以及最大测试电流 100 mA	Initial value Less than $20m \Omega$
		Does not include wire resistance 不包含电线阻抗	初始值≪20mΩ
6.4	withstandvoltage 耐电压	Apply 1000V AC(rms)for 1 minute and the leakage current shall not exceed 0.5mA to the adjacent terminal and ground of the Mate connectors 组合状态下的连接器,相邻两导体末端各施以电 压 1000V AC(有效值)时间1分钟,且漏电流必须 小于 0.5mA(毫安培)	No breakdownor flashover 无击穿或者产生火花
6.5	InsulationResistance 绝缘电阻	Apply 500V DC(rms)for 1 minute between adjacent contacts to measure the insulation resistance 相邻两接触导体, 1 分钟时间内施予 500V DC 电 压,测量期间的绝缘阻抗值	More than 1000 M Ω ≥1000M Ω

N0. 록号	Ltem 项 目	Test mode 试验方法		Requirement 技术要求
		Terminal crimping wires, axial per minute to 25 ± 3 mm rate of	AWG#24 wire AWG#24 导线	More than 30N ≥30N
7.1	Terminal crimping wire strength	the pullout force	AWG#26 wire AWG#26 导线	More than 20N ≥20N
	端子压接导线强度	端子所压接电线,以每分钟	AWG#28 wire AWG#28 导线	More than 13N \geq 13N
		25±3mm 速率之轴向拔出力	AWG#30 wire AWG#30 导线	More than 8N ≥8N
7.2	Fixed terminals and hole seat	The terminal and the hole seat, at to 25 ± 3 mm along the wire direct from the hole in the seat capacity	-	Per contact 单一接触点
	端子与孔座固定力	端子与孔座配合,以每分钟 25±3 线方向将端子从孔座中拔出的力	3mm 的速率沿导	More than 15N ≥15N
7.3	Singlecontact insertion force	The Housing together with the te Wafer matched, at a rate per minu inserting force test		Less than 6N
单接触插入力		孔座连同端子与针座两端互配,以 的速率,作插入力测试	人每分钟25±3mm	$\leq 6N$
7.4	Single contact withdrawal force	The Housing together with the te Wafer matched, at a rate per minut the pull-out test		More than 0.6N
单接触拔出力	单接触拔出力	孔座连同端子与针座两端互配, 以 的速率, 作拔出力测试	人每分钟25±3mm	≥0.6N
7.5	Pin Retention force	Exerts a force on the pin end, at a \pm 3mm, until the needle exit seat pu	•	Per contact 单一接触点
	PIN 针固定力	在针脚前端施加力,以每分钟 25 直到针退出针座的拔出力	5±3mm 的速率,	More than 15N ≥15N
	Durability	Mate connectors up 30 cycles at a 10 cycles per minute prior to enviror		Contact Resistance $\leq 30 \text{ m} \Omega$
7.6	耐久性	组合状态下的连接器且未经环境进行 10 次嵌入与拔出,连续 30 返测试		≪30 mΩ 接触电阻≪30 mΩ

Kinghelm[®]

N0. 序号	Ltem 项 目	Test mode 试验方法	Requirement 技术要求
		Connector combination state of the welding circuit board as test samples, the request in accordance with the following specifications, resistance to vibration test, whether to produce discontinuous current determined during the experiment (off) phenomenon, after the experiment measuring contact resistance	Appearance: No damage 外观: 无损伤
7.7	Vibration 振动	组合状态下的连接器焊接电路板上作为试验样品,依照如下规格要求,进行耐振动试验,试验 过程中确定是否产生不连续电流(断电)现象, 试验过后测量接触电阻值	Contact Resistance ≤30 mΩ 接触电阻≤30 mΩ
		Frequency(频率):10-55-10 Hz/minute Amplitude(振幅):1.5mm p-p Direction(方向): 1、Axis of up and down 上下轴向(Y 轴) 2、Axis of right the left 左右轴向(X 轴) 3、Axis of front and back 前后轴向(Z 轴)	current Discontinuity: 1 micro second Max 电流中断:1 µ sec Max
		Period(周期):2 hous for each direction 每一个轴向持续 2 小时	

8、 Endurance Characteristics:

环境性能

N0. Lt 序号 项	em	Test mode	Requirement
	目	试验方法	技术要求
81	oven, the request is specifications, high test and measurement 组合状态下的连接	ontinuously	Appearance: No damage 外观: 无损伤 Contact Resistance ≤30 mΩ 接触电阻≤30 mΩ

Kinghelm®

N0. 序号	Ltem 项 目	Test mode 试验方法	Requirement 技术要求
8.2	Temperature 温升	Mate connector measure the temperature rise of contact when the maximum rated current is passed 组合状态下的连接器,通过最大容许电流测量导体温度上升值	30℃ Max
8.3	Humidity 恒定潮湿	Connector combination under the condition of constant temperature and humidity place space, in accordance with the requirements of the following specifications, constant temperature and humidity test, after the experiment measuring contact resistance, insulation resistance and withstand voltage test 组合状态下的连接器放置恒定温度的湿气空间, 依照如下规格要求, 进行恒温恒湿试验, 试验过后测量接触电阻、绝缘电阻以及耐电压测试 Temperature: 40 ± 2 ℃ Relative humidity:90-95%RH Period:96 hours continuously 温度:40±2℃ 相对湿度:90-95% 周期: 持续 96 小时	Appearance: No damage 外观:无损伤 Contact Resistance: ≤30mΩ 接触电阻: ≤30 mΩ Insulation Resistance: ≥500MΩ 绝缘电阻: ≥500MΩ No breakdown or flashover 无击穿或者产生火花
8.4	Temperature cycling 温度循环	The combined state of connectors as test samples, in accordance with the requirements of the following specifications, thermal shock test, after the test measuring contact resistance, insulation resistance, and resistance to voltage 组合状态下的连接器作为试验样品,依照如下规 格要求,进行冷热冲击试验,试验后测量接触电 阻、绝缘电阻、以及耐电压测试 One cycle consists of: -55±3℃,30min,Room temp.10-15 min 85±3℃,30min,Room temp.10-15 min Total cycle: 5 cycle -55±3℃,30 分钟,放置转换时间 10-15 分钟 85±3℃,30 分钟,放置转换时间 10-15 分钟 循环次数: 5 次	Same as paragraph 8.3 同 8.3 章节

Kinghelm®

N0. 序号	Ltem 项 目	Test mode 试验方法	Requirement 技术要求
		The combined state of connector as test samples, salt spray test according to the following specifications, test samples will be clean again with the water to dry naturally, measurement of contact resistance 组合状态下的连接器作为试验样品,依照如下规 格要求进行盐水喷雾试验,试验后将样品用清水 冲干净自然凉干,测量接触电阻值	Appearance: No damage 外观: 无损伤
8.5	Salt spray 盐雾	Temperature: 35±3℃ Solution: 5±1% Period: Stamping after tin plated for 8 hours Stamping before tin plated for 48 hours 温度: 35±3℃ 浓度: 5±1% 周期: 先电镀后冲压 8 小时 先冲压后电镀 48 小时	Contact Resistance: ≤30mΩ 接触电阻: ≤30mΩ
8.6	Solder ability 可焊性	In accordance with the following specifications were placed tin soldering test 放置锡炉中依照如下规格进行焊锡试验 Solder Temperature:245±5℃ Immersion period:3±0.5S 焊锡温度: 245±5℃ 沉浸周期: 3±0.5S	Area of Soldering: ≥90% 焊锡面积: ≥90%
8.7	Resistance to soldering heat 耐焊接热	anual soldering tin process Soldering time: 3±0.5S Soldering pot: 305±5℃ 手工烙铁焊锡工艺 焊接时间: 3±0.5S 焊接温度: 305±5℃ Mode of operation: 操作方式: Position DIP type needle solder, conductor or a fixed piece at the end of the 1.5mm distance DIP 型针座焊锡位置,距离导体或固定片末端 1.5mm Wave soldering tin soldering process Soldering time: 5±0.5S Soldering pot: 230±5℃ 波峰焊焊锡工艺 焊接时间: 5±0.5S 焊接温度: 230±5℃	Appearance: No damage 外观: 无损伤

Kinghelm[®]

9、Pac	Packaging Transportation Storage				
包装	包装、运输、贮存				
9.1	Packaging				
	包装				
(1)	Terminal packaging for the dish material packaging, rubber shell packaging for plastic				
	bags, packaging bags packed for needle, (paste) into the certificate, indicate the product				
	name, specifications, quantity production date and other information				
	端子内包装为盘装带料包装、胶壳内包装为塑料袋,针座包装为袋装,装(贴)入合格				
	证,注明产品名称、规格型号、数量生产日期等信息				
(2)	Exterior package is carton, facing the packing list, the packing list marked with product				
	name, specificcation model, quantity, date of dispatch.				
	外包装为纸箱,贴装箱单、装箱单上注明产品名称、规格型号、数量、出货日期				
(3)	The product in the box must not rock				
	产品在箱内不晃动				
9.2	Transportation				
	运输				
	Any vehicle can be adopted for the transportation,but moisture-proof and no mechanical				
	damage,transport temperature to20°C~+50°C				
	允许用任何方式运输,但需避免雨雪直淋和阳光照射,不能有碰撞和挤压等机械损伤,				
	运输环境温度为-20℃~+50℃				
9.3	Storage				
	贮存				
(1)	The connector of packing finished should be in the ambient temperature between-10 $^\circ\!\mathrm{C}$				
	to+40°C, Relative humidity≤80%. To store in storehouse does not have acidic, alkaline				
	air and other corrosive gas in the ambient air.				
	包装完毕的连接器应在环境温度为-20℃~+40℃,相对湿度≤80%,周围空气中没有酸性,				
	碱性及其它腐蚀性气体的库房中贮存				
(2)	Re-qualification test shall be conducted immediately while the storing duration exceed 6				
	months				
	贮存期为6个月,超期6个月需从新检查				

	<u> </u>		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\frac{1}{1.6010.25}$ $\frac{1}{1.6000.19}$ $\frac{1}{1.600$	N		-0.64±0.05
SHECHFICHTIONS SHECHFICHTIONS 1. Correct Retring: 4A.8C. DC 2. Voltage Rating: 4A.8C. DC 3. Aption 1. Correct Retring: 250° AC. DC 3. Aption 1. Correct Retring: 3. A			
$\frac{1}{40.020}$ $\frac{1}{3.2014020}$ $\frac{1}{3.20140000}$ $\frac{1}{3.20140000}$ $\frac{1}{3.20140000}$ $\frac{1}{3.20140000}$ $\frac{1}{3.201400000}$ $\frac{1}{3.201400000}$ $\frac{1}{3.201400000}$ $\frac{1}{3.201400000000000000000000000000000000000$	DRAWN		∽11.60±0.25
$ \frac{5.83\pm0.25}{-3.20\pm0.20} $ SPECIFICATIONS 1. Current Rating: 4A AC, DC 3. Contact Resistance: 2000 AC, DC 3. Contract Resistance: 2000 AC, DC 3. Contract Resistance: 2000 AC, DC 4. Contact Resistance: 1000M 9 Min 6. Withstanding Voltang: 1000V AC/minute 7. Material: Wafer Nylone, U194V-0 PIN Brass Tin-plated $ \frac{4}{2542-02AWGF} = \frac{1}{2.54} + \frac{1}{2.54} + \frac{1}{2.54} + \frac{1}{2.70} + \frac{1}{2.542} + \frac{1}{2.542-05AWGF} = 10.16 + \frac{12.70}{12.70} + \frac{1}{2.542-05AWGF} = 10.16 + \frac{1}{2.70} + \frac{1}{2.542-05AWGF} = 20.32 + \frac{1}{2.70} + \frac{1}{2.542-05AWGF} = 10.16 + \frac{1}{2.70} + \frac{1}{2.542-05AWGF} = \frac{1}{2.5} + \frac{1}{2.70} + \frac{1}{2.542-05AWGF} = \frac{1}{2.5} + \frac{1}{2.5} + \frac{1}{2.542-05AWGF} = \frac{1}{2.5} + \frac{1}{2.5} + \frac{1}{2.542-05AWGF} = \frac{1}{2.5} + \frac{1}{2.5$	也在1000000000000000000000000000000000000		
$ \frac{225}{12} = \frac{110}{12} = $	GENERL X.±0.25 .X±0.20 .XX±0.15 .XXX±0.10	PCB LAY	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
ing: 4A AC, DC Range: -25° C $\sim +85^{\circ}$ C istance: 20m Ω Max Resistance: 1000W Ω Min g Voltang: 1000V AC/minute fer Nylon66, UL94V-0 in-plated F 2.54 5.08 7.62 F 12.70 15.24 5.08 F 15.24 17.78 20.32 F 22.86 25.40 F 25.40 27.94 30.48 F 48.26 50.80 F 50	线田生 3、07、01 来 名 3、07、03 来 名 3、07、03 来 名 13、07、05 13、07、05	编 	
DC →+85°C Max 00M Ω Min 0V AC/minute 94V-0 94V-0 10 AC/minute 94V-0 10.16 12.70 15.24 17.78 20.32 22.86 22.86 22.86 25.40 27.94 30.48 50.80 <u>REV</u> A <u>REV</u> A <u>30.48</u> 50.80 <u>REV</u> A <u>30.48</u> 50.80 <u>81621</u> 1/1 <u>9260</u> 0755-28192060	HX2.	AWGF AWGF AWGF AWGF AWGF AWGF AWGF AWGF	DNS Ating: ' Rating: ' Resistang Presistang Dan Resistang Dan Resistang Son Resistang
Min Min Min Min B 5.08 7.62 10.16 12.70 15.24 10.16 12.70 15.24 17.78 22.86 22.86 22.86 22.86 22.86 22.86 17.78 22.86 22.86 17.78 22.86 17.78 1		$\begin{array}{c c} & \mathcal{R} \\ & A \\ & 2.54 \\ & 5.08 \\ & 7.62 \\ & 7.62 \\ & 10.16 \\ & 12.70 \\ & 12.70 \\ & 12.70 \\ & 12.70 \\ & 12.286 \\ & 20.32 \\ & 22.86 \\ & 22.86 \\ & 22.40 \\ & 27.94 \\ & 48.26 \end{array}$	4A AC, DC 250V AC, D 250V AC, D e: -25°C~ ce: 20mΩ tance: 100 tang: 1000 tang: 1000 ylon66, UL9 ated
		(mm) B 5.08 7.62 10.16 12.70 15.24 17.78 20.32 22.86 22.86 22.40 27.94 30.48 50.80	/minute